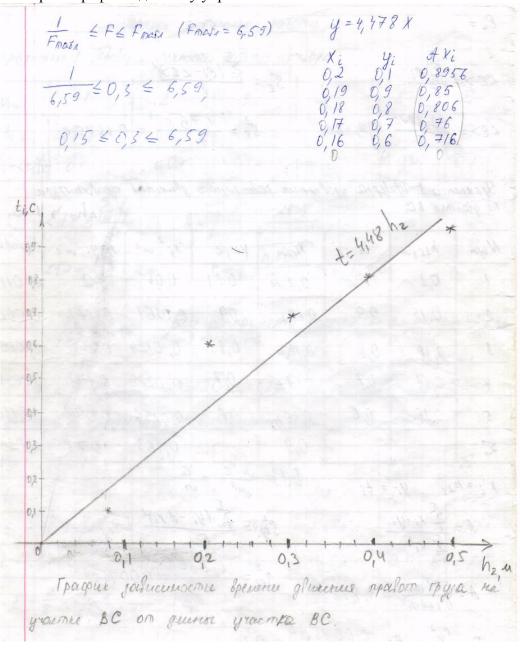

Уважаемые студенты!

Лабораторные занятия проводятся для того, чтобы Вы:

- научились правильно работать с оборудованием, соблюдая технику безопасности,
- правильно снимать показания с приборов,
- грамотно проводить расчёты, полученных экспериментальных данных, правильно записывать ответ с учётом погрешностей измерения,
- правильно заполнять таблицы и строить графики,
- уметь проводить анализ, полученных результатов.
- навыки, полученные при оформлении лабораторных работ, Вам понадобятся при дальнейшем написании курсовых работ и дипломного проекта, а так же при выступлениях на различных конференциях и написании научных работ.

Лабораторные работы оформляются на листочках в клеточку. Каждая работа должна содержать:


- название лабораторной работы,
- информацию об авторе работы,
- целях и задачах эксперимента, а так же об оборудовании, которое использовалось при исследованиях.
- желательно сделать рисунок или разместить фотографию экспериментальной установки.

- номер и цель упражнения,
- таблицы с экпериментальными данными и промежуточными расчётами,
- проверка размерности каждой расчётной величины,
- подстановка величин в рассчётную формулу с единицами измерения в системе СИ,
- расчёт погрешностей измерения,
- ответ,
- анализ, полученных результатов.

mahita	James Lake	Турадок In					£4 =				£5	= Contract		44
Inparha	nece I. Ilpole	opea morrocan	a patoma no	udoja.	A PARA	ingle)	100	= = = [e ²	= \(\frac{5}{14} \left(\epsilon i - \frac{5}{14} \right) \(\epsilon i - \frac{5}{14} \right) \\ \epsilon i - \frac{5}{14} \right) \(\epsilon i - \frac{5}{14} \right) \\ \epsilon i - \frac{5}{14} \right) \(\epsilon i - \frac{5}{14} \right) \\ \epsilon i - \frac{5}{14} \right) \(\epsilon i - \frac{5}{14} \right) \\ \epsilon i - \frac{5}{14} \right) \(\epsilon i - \frac{5}{14} \right) \\ \epsilon i - \frac{5}{14	LE>)2		
Non	Land	2	3	4	5	E		3	20 31					
ti,c	1,3	1,0	1,4	1,2	1,1	6-	LE>=	12,387c	= 2,486	,-2	Se = 1/4	750-4=	2,4375 e	4
$(t_i - \langle t \rangle)^2$	0,01	0,04	0,04	0	9,01	0,1	10	2 17	dans	1	1	ale we me t		72
	$\langle \pm \rangle = \frac{\sum_{i=1}^{5} t_i}{\sum_{i=1}^{5} (t_i - \langle t \rangle)^2}$							Heavenue 3. Molepha ypalninus palususproro gluxenus repatoro 1745 a no yronemue BC.						
0 100	2+7 = 1=1 t		1 4				Nyn	hzi, u	ti,c	Yī, u	yi,c	Yi, us 2	Ki-yi, we	(y: - # xi)
	$2t7 = \frac{6c}{5}$	12c	$S_{\xi}^* = \sqrt{\frac{0/C}{4}}$	= = 0.15	90		1	0,2	1	0,2 tt	0,21	0,04	0,2	0,0112
1	5		Vt / 4	7,72			2	0,19	0,9	0,194	0,9	0,0361	0,171	0,0025
	$\frac{S_{\pm}^{2}}{2\pm 3} \leq 0,05.$ Each garrow her-to transmache, no yenometre para $\frac{0,025}{1,44} = 0.0173 \leq 0,05 = 0$						- 3	0,18	0,8	0,18 da	0,8	0, 0324	0,144	0,0000
							4	0,17	0,7	0,174	0,7	0,0289	0,119	0,00358
h, = 13 an=0,BM hz = 20 cm = 0,24 => yenaroles paso mark						5	0,16	0,6	0,16 4	0,6	0,0256	0,096	0,0132	
yπρακταριίε 2. Oπρερελεπείε yrislom genoreneu ελοκα ο em guenereuu.						2			0,9		0,163	0,73	9,03	
Non 7	1=0,0454		3	4	1.5	\mathcal{Z}'	x i = 1	hzi yi	= £;		4.C =	e vi		10
	13	10	1,4	1,2		6	$A = \frac{\sum_{i=1}^{5} x_{i} \cdot y_{i}}{\sum_{i=1}^{5} x_{i}^{2}}$ $S_{ay}^{2} = \frac{\sum_{i=1}^{5} (y_{i} - t \cdot x_{i})^{2}}{5 - t} S_{ay}^{2} = 0$ $A = \frac{0.73 \text{ wc}}{0.163 \text{ m}^{2}} = 4.478 \frac{c}{m}$ $S_{ay}^{2} = \frac{0.03c^{2}}{4} = 0.0075c^{2}$							
ti,c	/		-	-	1,1									
£i, c-2	2,023	3,42	1,744	2,374	2,825	12,387								
Si-LEN	4 0,2	0,884	0,54	0,011	0,1156	1,75								
E = 3	$a = h_2^2$	[E]=	=	$\frac{1}{c^2} = c^{-2}$			F =	$\frac{Sap^2}{Soc^2} = P$	= 0,00	73 C = 1	0,3.			
	L $2h$, t^2	· Z **	u- ç- 4				Son =	-SZ	-/					3.

- при необходимости должен быть построен график к данному упражнению

Общие правила оформления лабораторной работы

В работе должны присутствовать следующие важные моменты:

1. грамотно заполнены таблицы:

- таблица должна быть пронумерована и желательно подписана. В ней должны быть проставлены все единицы измерения (обычно в системе СИ),
- числа в каждом столбце (или в строке) должны быть заполнены с одинаковой точностью (одинаковым числом цифр после запятой)

						Таблица 2
$N_{u_{3M}}$	T_i , c	$S_{\langle T \rangle}$, C	l , м	$S_{}$, M	$\langle \boldsymbol{g} \rangle, \frac{M}{c^2}$	S_g , $\frac{M}{c^2}$
1	1.79					
2	1.84					
3	1.75	$4.4 \cdot 10^{-2}$	1.15	0.025	10.25	0.13
4	1.82					
5	1.78					
Σ	8.94					

2. должен быть представлен полный расчёт каждой величины (все пять раз расчёт одной и той же величины делать не обязательно. Мне необходимо увидеть грамотный расчёт хотя бы один раз, так как все остальные вычисления Вы делаете аналогично. Если ошибка в одном расчёте, то и в остальных тоже самое).

Перед этим необходимо проверить размерность этой величины, подставив в исходную формулу вместо чисел их единицы измерения и провести соответствующие преобразования:

$$S_g^2 = \left(\frac{4\pi^2}{\left\langle T \right\rangle^2}\right)^2 S_l^2 + \left(\frac{-8\pi^2 l}{\left\langle T \right\rangle^3}\right)^2 S_T^2 + \left(\frac{8\pi \ l}{\left\langle T \right\rangle^2}\right)^2 S_\pi^2;$$

$$\left[S_g^2\right] = \left(\frac{1}{c^2}\right)^2 M^2 + \left(\frac{M}{c^3}\right)^2 c^2 + \left(\frac{M}{c^2}\right)^2 1 = \frac{1}{c^4} M^2 + \frac{M^2 c^2}{c^6} + \frac{M^2}{c^4} = \frac{M^2}{c^4} + \frac{M^2}{c^4} + \frac{M^2}{c^4} = \left[\frac{M^2}{c^4}\right].$$

А затем привести расчёты с подстановкой единиц измерения (все формулы в физике записаны в расчёте на международную систему единиц СИ):

$$S_g^2 = \left(\frac{4 \cdot 3,14^2}{\left(1,78c\right)^2}\right)^2 \cdot \left(0,025M\right)^2 + \left(-\frac{8 \cdot 3,14^2 \cdot 1,15M}{\left(1,78c\right)^3}\right)^2 \cdot \left(4.4 \cdot 10^{-2} \ c\right)^2 + \left(\frac{8 \cdot 3,14 \cdot 1,15M}{\left(1,78c\right)^2}\right)^2 \cdot \left(4.4 \cdot 10^{-2} \ c\right)^2 = 0,169 \frac{M^2}{c^4}$$

$$S_g^2 = 0,169 \frac{M^2}{c^4}$$

3. грамотно записан окончательный ответ:

$$g = (10.25 \pm 0.13) \frac{M}{c^2}$$

При записи результата измерений в стандартной форме необходимо соблюдать следующие правила:

- 1. погрешность измерений Δx необходимо округлять до двух значащих цифр, если первая из них единица, и до одной значащей цифры во всех остальных случаях.
- 2.. при записи среднего значения <x> после запятой необходимо оставлять столько же знаков после запятой, сколько и в погрешности. Более подробно прочитайте в статье "правила построения графиков и заполнения таблиц", которая есть в папке "Для студентов дневного обучения", далее «Лабораторная работа 0-1».

4. Необходимо определить относительную погрешность Вашего эксперимента.

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа Δx к его среднему

значению
$$\langle x \rangle$$
:
$$\varepsilon = \frac{\Delta x}{\langle x \rangle} \cdot 100\% \cdot$$

Если оценка погрешности результата физического измерения не сделана, то можно считать, что измеряемая величина вообще неизвестна, поскольку погрешность может, вообще говоря, быть того же порядка, что и сама измеряемая величина или даже больше.

Если есть возможность сравнить Ваши результаты с уже известными табличными значениями, то необходимо определить относительную погрешность Вашего эксперимента относительно табличного значения:

$$\varepsilon = \frac{\langle x \rangle_{\text{эксперимента}} - x_{\text{табличное}}}{x_{\text{табличное}}} \cdot 100\%$$

и провести анализ этой относительной ошибки (велика она или незначительна). Если погрешность оказывается значительной, то необходимо указать, с чем это, по Вашему мнению, связано:

Относительная погрешность нашего эксперимента составляет:

$$\varepsilon = \frac{\left|g_{npakmuka} - g_{meopus}\right|}{g_{meopus}} \cdot 100\% = \frac{10.25 \frac{M}{c^2} - 9.81 \frac{M}{c^2}}{9.81 \frac{M}{c^2}} \cdot 100\% = 4,5\%.$$

Вывод: Полученное значение ускорения свободного падения незначительно отличается от теоретического значения

5. грамотно построены графики:

- на концах осей графика должны быть указаны откладываемые физические величины и их размерности,
- грамотно выбран масштаб (обычно с ценой деления, равной приблизительно удвоенной абсолютной погрешности измерения данной величины $2\Delta x$, которая откладывается на этой оси).

Масштабные деления на оси наносят так, чтобы удобно было наносить экспериментальные данные и снимать показания с графика. Для этого цену деления на оси обычно делают так, чтобы она составляла 1, 2, 5 единиц (или 0.1, 0.2, 0.5, или 10, 20, 50 и т.д.) измеряемой по оси величины.

- график должен быть подписан.

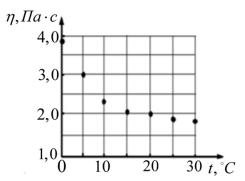
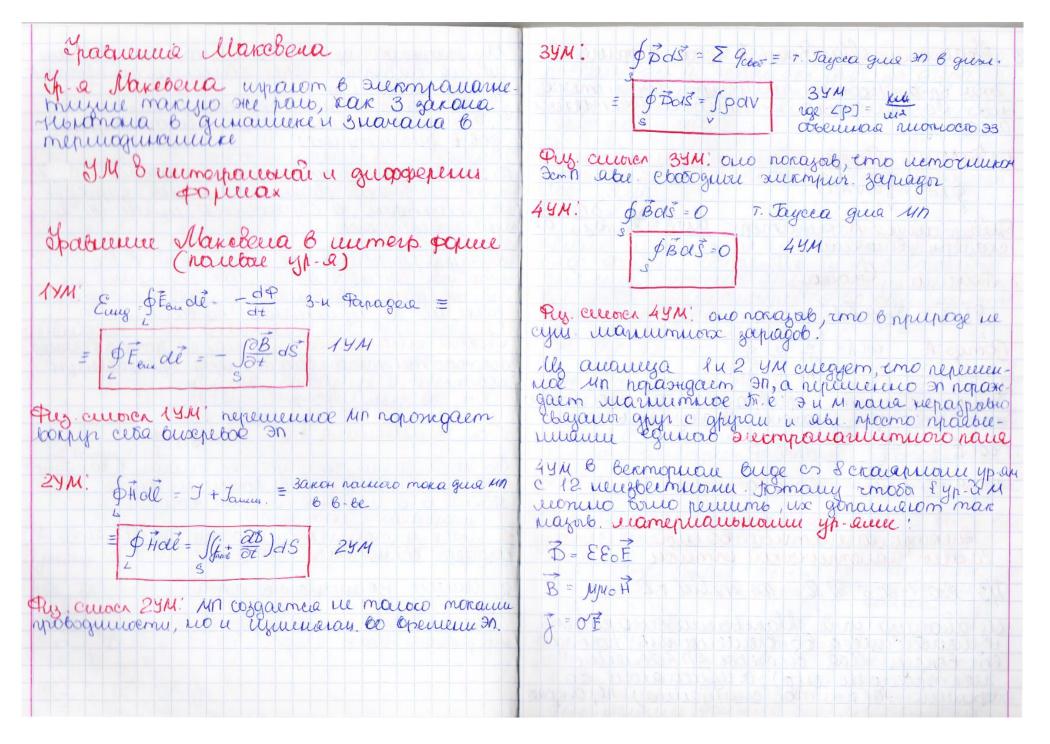


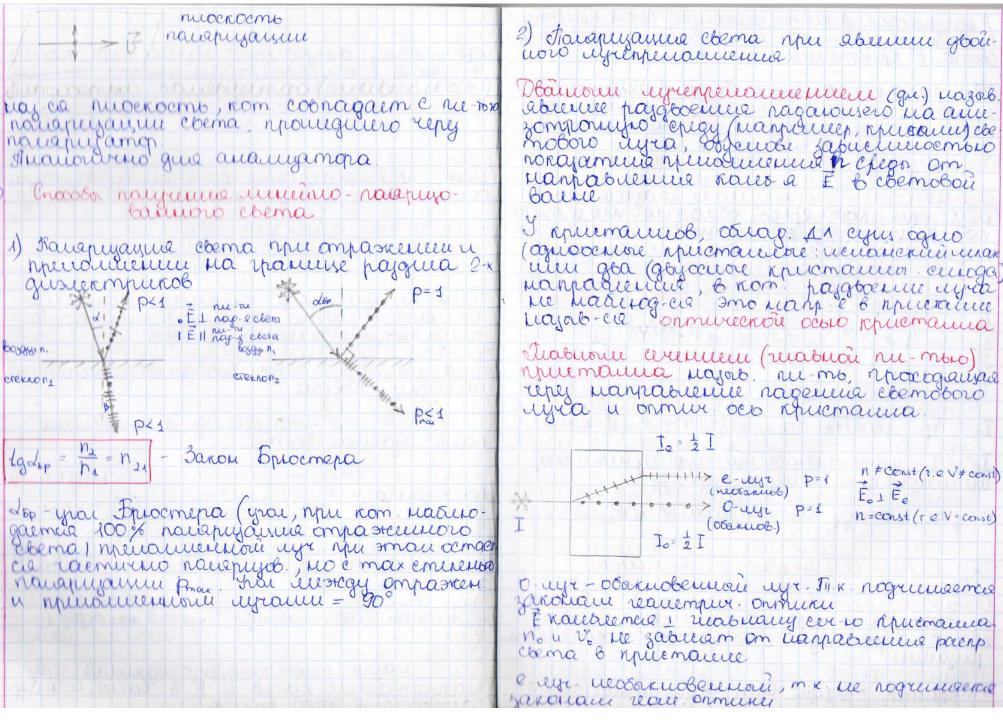
Рис. 1 Зависимость коэффициента динамической вязкости воды от её температуры

Более подробно всё описано в статье «Правила построения графиков и заполнения таблиц», которая есть на сайте vinoglyadov.ucoz.ru в папке "Для студентов дневного обучения", далее «Лабораторная работа 0-1».

Пример оформления конспекта лекций

Одним из важнейших навыков работы с информацией является навык грамотного конспектирования изучаемой информации.


Конспект правильно писать разноцветными пастами. Каждый цвет имеет свою смысловую задачу и помогает ориентироваться в вашем конспекте.


Обычно красной пастой выделяются названия тем, законов, определений, выделяются формулы и важные замечания.

Конспект пишется для того, чтобы было легко изучить данный материал, поэтому важные моменты сопровождаются поясняющими рисунками, которые несут дополнительную информацию к формулам и определениям.

Формулы должны содержать пояснения входящих в них величин и единицы их измерения. Следует помнить, что все формулы в современных учебниках по физике записаны в международной системе СИ.

Figura rekullu comygenden ep. of Mk-21 Borobyebori Exameliunon Regenne & Chomuna, Thabuenne Marchena 3 828.1-28.5 D. R. 869-71 Rab. 60° roga 19 Sera Mancheme opposition ybar ore n morey brewelly saxour suckmpoema mierie in marnemuziera pazpar zaran mequio equioro sienmauariumioro Ona remain occiobilizio zagary sulcipogui. manure - suava nainregenernice morros ce Diekmpin. Zapiagos o ripoempariembe monero otherica rem zanuamo Chai yp.a, Manetemi Boele nomamile monocurementa, payapan ero co-la JION Cullustilles a accusompula hougelleamon yenu rocmaerillao u neperelezimoro mona. Flacinogenina nonazab. 1. Mamalularia mor calgoricamon ue sporyc-Kalem 2. Venewelliam mor rougemany nronge Kaem, me byenu cycly mor. Ino waeciaer al men ano monexogim normalico nerea ragra kongentamora Bo brune repearagen C ogunar no bener nuce un culi ne maiono borpy nogoga-nus mologos c moran, no u borpy c, rige monoproboguimocomi nem

Exactalence & numu relations cer-a priletaina skeegene CAB (p-p cascapa & Eage, chunigap) ne u Ve zabuliam om manpabilima paerpoemp. света в пристание Choim noragoil emo При распространении света вдаль оптич он 1) gua Os kpullmanello 10= Il, rge 4- yrai noto Knumanna No ne (re Vo-Ve) u abilione goodnoma nu mu nauspuz coema, pap & - yale nocmalienais beaucines pap noro agrenpenouciemens he making. nymo, magazerrai coemos o DA xpiremance, y Toughyanus coma you guscrousice 2) qua DA Heightemen 4= [d] pe (ruemous) humentous gureparquote may ca able [d] - ygeneriais nocmalmais Epainenna pagu mile, nou nom congo, conagaroliste onniver not anyomponied, negunar nonconsor p niiomuoemo steugraemu in men e pajuoù nu- moro nalispujaisme l-nymo, young cheman & OA sungkoomer, u Onomo c ruacmillalle mypulallua 3) gue OA pacombopob 4=[d](l [d]-ygentuale normalmane bransenne, in C manobare nous-a paremb. 6-6a, ms OA abusemed ocosonen bugan gourioro ugre nrenoxulence & OA 6-bax nraiexogum Dakon Ia=Ip Costo I= 2 Leer Mayroca pariserulure ragarayero inpra ma 2, Icer. come e npaboù a gripai - è mboù rpy-Ia u Ip- интененой света, прошершего через robai naughuainen ogenean augnaumy. ananiyamp a nowapyampi, Br 90, 40 c payholelle exopormalle painces 6 DAB. Into ebajamo e necemempurationi 4-year, meskgy re cer-ance. A 4 P empoemen materya OAB Mullemenul nomareyobannoro chema Ormiveckie akmubilore beuseemba 1) Cascapullemps (gue onpep c caxapa 6 p-pe) Onneverse asmelbuonece (OA) mazab. 6. ba, rpe nposessegemme repet rom. nucetro-naugrey. navajujamonuse opinompo como u muno (coma, nacexagin roborom nuceroemic nous pugarun Dinauapyariconnore orker (canningarieness) Hanpuller, morgoe CAB (Mapis, caseap) chepeo kitho

Конспект Ваших лекций, представленный на зачёте или экзамене, повысит вероятность получения положительной оценки на экзамене, так как свидетельствует о профессиональном подходе Вашего изучения данного предмета (по крайней мере, по физике).

Всем удачи. До встречи.