
ТЕМА: Поляризация света

Поляризацией света называется физическая характеристика оптического излучения, которая описывает поперечную анизотропию световых волн.

Иногда поляризацией света называют процесс получения поляризованного света из естественного или частично поляризованного.

Понятие «поляризация света» ввёл в физику английский учёный И. Ньютон в 1704 г.

Поляризация света нашла своё объяснение в электромагнитной теории света английского физика Дж. Максвелла. Из этой теории следует, что электромагнитная волна является поперечной (см. рис 1).

Рис. 1 Распределение проекций векторов E и H в электромагнитной волне по направлению её распространения

Свет и его природа

Светом называются электромагнитный волны с длиной волны от 380 нм до 760 нм, воспринимаемые органами зрения человека (1 нм (нанометр) = 10^{-9} м).

Электромагнитной волной называется распространяющееся в пространстве переменное электромагнитное поле.

В электромагнитной волне вектора напряжённости электрического поля \vec{E} и напряжённости магнитного поля \vec{H} колеблются синфазно (то есть одновременно достигают максимальных и минимальных значений) во взаимно перпендикулярных плоскостях (то есть $\vec{E} \perp \vec{H}$) и одновременно перпендикулярно вектору скорости \vec{v} распространения волны (то есть $\vec{E} \perp \vec{v}$ и $\vec{H} \perp \vec{v}$). Причём в любой момент времени $\varepsilon \varepsilon_0 E^2 = \mu \mu_0 H^2$,

выполняется условие

где \mathcal{E} - диэлектрическая проницаемость вещества, в котором распространяется электромагнитная волна;

$$\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\Phi}{M}$$
 - электрическая постоянная; E - напряжённость электрического поля волны, $\frac{B}{M}$;

 μ - магнитная проницаемость вещества, в котором распространяется электромагнитная волна;

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{I'H}{M}$$
; H - напряжённость магнитного поля волны, $\frac{A}{M}$.

Поскольку $\vec{E} \perp \vec{H}$, то при рассмотрении поляризации света достаточно исследовать поведение лишь одного из них. Наблюдения показывают, что физиологические, фотохимические, фотоэлектрические и другие свойства света обусловлены колебаниями электрического вектора \vec{E} в световой волне. Поэтому вектор \vec{E} называют обычно *световым вектором* и исследуют только его.

Виды поляризованного света

Поляризованным называется свет, в котором направления колебаний вектора \vec{E} каким-либо образом упорядочены. Различают три вида поляризованного света: плоскополяризованный, эллиптически-поляризованный и циркулярно поляризованный свет.

Плоскополяризованным или **линейно-поляризованным** называется свет, при распространении которого вектор \vec{E} колеблется всё время в какой-либо одной плоскости.

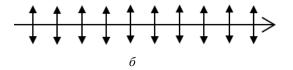
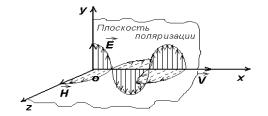
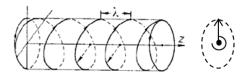
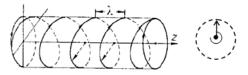



Рис. 2 Изображение плоскополяризованного света на чертежах


- Если вектор \overrightarrow{E} плоскополяризованного света колеблется в плоскости перпендикулярной плоскости падения света, то на чертежах он изображается точками \bullet (см. рис.2 (a)).
- Если вектор \vec{E} плоскополяризованного света колеблется в плоскости падения света, то на чертежах он

Плоскостью падения света называется плоскость, проходящая через падающий луч и перпендикуляр, восстановленный в точку падения к границе раздела двух сред.



Плоскостью поляризации света называется плоскость, проходящая через направление колебаний вектора \overrightarrow{E} плоскополяризованного света и направление распространения этой волны.

Эллиптически-поляризованным называется свет, при распространении которого, конец вектора \overrightarrow{E} описывает эллипс.

Циркулярно поляризованным или **поляризованным по кругу** называется свет, при распространении которого, конец вектора \overrightarrow{E} описывает окружность (круговую поляризацию обнаружил в 1815 г. Био).

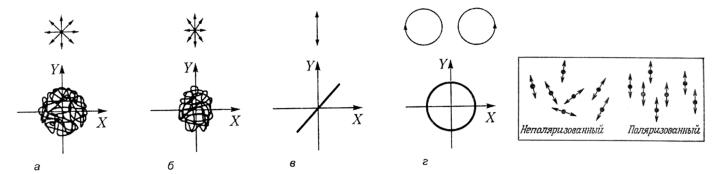
Квант света, испускаемый атомом, представляет собой ограниченную в пространстве электромагнитную волну длиной приблизительно 3 метра (так, называемый *цуг* электромагнитного поля) и является линейно поляризованным.

В реальных источниках света одновременно излучают множество атомов, причём каждый атом излучает квант света с произвольной ориентацией вектора \vec{E} и независимо друг от друга. Поэтому в результирующей световой волне направление колебаний вектора \vec{E} в каждый момент времени непредсказуемо и все направления перпендикулярные распространению световой волны оказываются равновероятными.

Естественным или **неполяризованным** называется свет, при распространении которого в каждый момент времени направление колебаний вектора \overrightarrow{E} непредсказуемо и все направления перпендикулярные распространению световой волны оказываются равновероятными.

Рис. 3 Изображение естественного света на чертежах

Таким образом, естественный или неполяризованный свет можно рассматривать как наложение многих электромагнитных волн, распространяющихся в одном и том же направлении, но со всевозможными ориентациями плоскостей колебаний вектора \overrightarrow{E} . Для неполяризованного света нельзя указать плоскость преимущественного расположения вектора напряженности электрического поля \overrightarrow{E} . Все ориентации этого вектора равновероятны.


Чаще всего имеется какое-либо преимущественное направление колебаний вектора \overrightarrow{E} .

В этом случае говорят, что свет является в плоскости, проходящей через это направление.

Рис. 4 Изображение частично поляризованного света на чертежах

Рис. 5 Движение вектора E при распространении в пространстве естественного (а), частично поляризованного (б), плоско поляризованного (в) и циркулярно поляризованного (г) света

Для получения и анализа поляризованного света применяют специальные приборы: поляризаторы и анализаторы.

Поляризатором называется устройство для получения поляризованного света.

Человеческий глаз не отличает естественный свет от поляризованного, поэтому для анализа поляризации света используют устройство, называемое *анализатором*.

Анализатором называется устройство для анализа вида и степени поляризации поляризованного света.

Степенью поляризации света называется скалярная величина, равная

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},$$

где I_{max} и I_{min} соответственно максимальная и минимальная интенсивности света, пропускаемого анализатором.

- для естественного света $I_{max} = I_{min}$ и, следовательно, P = 0,

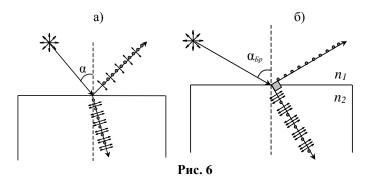
- для линейно поляризованного света $I_{min} = 0$ и, следовательно, P = 1,

- для частично поляризованного света $I_{max}
eq I_{min}$ и, следовательно, 0 < P < 1.

Поляризатором и анализатором может служить один и тот же прибор в зависимости от того, для каких целей его используют: для получения поляризованного света или для его анализа.

Главной плоскостью поляризатора (плоскостью пропускания поляризатора) называется плоскость, в которой колеблется вектор \vec{E} , после прохождения через поляризатор света. (аналогичное определение для главной плоскости анализатора).

Способы получения линейно поляризованного света


Для получения полностью или частично поляризованного света обычно используют одно из трёх физических явлений:

- поляризация света при его отражении и преломлении на границе раздела двух диэлектриков,
- явление двойного лучепреломления,
- явление линейного дихроизма.

Поляризация света при его отражении и преломлении на границе раздела двух диэлектриков

При падении естественного света на границу двух диэлектриков (например, воздух и стекло), отражённый и преломлённый лучи оказываются частично поляризованными во взаимно перпендикулярных направлениях, причём, в отражённом луче вектор \vec{E} совершает колебания преимущественно в плоскости перпендикулярной плоскости падения света, а в преломлённом луче, преимущественно в плоскости падения света.

Плоскостью падения света называется плоскость, проходящая через падающий луч и перпендикуляр, восстановленный в точку падения к границе раздела двух сред.

Степень поляризации P этих лучей зависит от их угла падения α на диэлектрик.

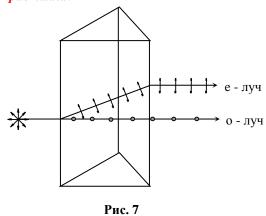
Сначала степень поляризации P монотонно возрастает с увеличением угла падения α (см. случай а) на рис. 6 и достигает своего максимального значения $P_{\text{мах}}$ при угле $\alpha_{\text{Бр}}$, называемом **углом Брюстера** (см. случай б) на рис. 6), а затем монотонно убывает.

При падении естественного света под углом Брюстера $\alpha_{\it Бp}$ отражённый луч оказывается линейно поляризованным

(то есть P=1), а преломлённый луч достигает своей максимальной степени поляризации (то есть P_{max}) и оказывается перпендикулярным к отражённому лучу (см. рис. 6 случай б)).

Угол Брюстера $\alpha_{\mathit{Бp}}$, при котором наблюдается линейная поляризация отражённого от границы раздела двух диэлектриков света, определяется по **закону Брюстера**:

Тангенс угла Брюстера $tg \, \alpha_{\mathit{Бp}}$ равен относительному показателю преломления n_{21} второй среды относительно первой: $tg \, \alpha_{\mathit{Бp}} = n_{21}$,


где $n_{21} = \frac{n_2}{n_1}$ — относительный показатель преломления второй среды относительно первой,

а n_1 и n_2 - абсолютные показатели преломления первой и второй среды соответственно.

Явление двойного лучепреломления

Двойным лучепреломлением называется явление раздвоения падающего на анизотропную среду (например, на прозрачный кристалл) светового луча, обусловленное зависимостью скорости распространения света в этой среде (т.е. показателя преломления среды n) от направления колебания вектора \vec{E} в световой волне.

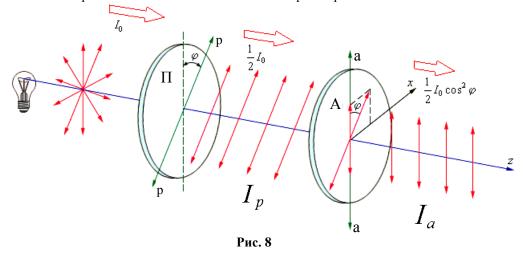
У кристаллов, обладающих двойным лучепреломлением, существует одно (*одноосные кристаллы*) или два (*двуосные кристаллы*) направления, в которых раздвоения луча не происходит. Это направление называется *оптической осью кристалла*.

При падении неполяризованной световой волны на одноосный кристалл она расщепляется на два луча со взаимно перпендикулярными плоскостями поляризации.

Один из лучей имеет плоскость поляризации перпендикулярную главному сечению кристалла и подчиняется законам геометрической оптики (этот луч называют *обыкновенным* и обозначают $\mathbf{0} - \mathbf{лучом}$), а другой луч имеет плоскость поляризации параллельную главному сечению кристалла и не подчиняется законам геометрической оптики (поэтому этот луч называют *необыкновенным* и обозначают $\mathbf{e} - \mathbf{лучом}$).

Таким образом, при выходе из кристалла оба луча оказываются линейно поляризованными во взаимно перпендикулярных плоскостях.

Главным сечением кристалла называется плоскость, проходящая через направление падающего светового луча и оптическую ось кристалла.


Скорость распространения **0-луча** а, следовательно, и его показатель преломления n_o не зависят от направления распространения этого луча в кристалле, (т.е. n_o = const), а скорость **e-луча** и, следовательно, n_e зависят от его направления распространения в кристалле (т.е. $n_e \neq \text{const}$).

При распространении света вдоль оптической оси кристалла $n_o = n_{e_o}$ поэтому явление двойного лучепреломления не наблюдается.

Явление линейного дихроизма

Линейным дихроизмом называется явление, при котором среды, обладающие двойным лучепреломлением, неодинаково поглощают лучи с разными плоскостями поляризации.

Например, пластинка из кристалла **турмалина** толщиной всего в 1 мм пропускает свет уже только одного направления колебаний вектора \vec{E} и полностью поглощает свет всех других направлений. Поэтому такие пластинки раньше использовали в качестве поляризаторов.

На рис. 8 поляризатор Π преобразует падающий на него естественный свет интенсивностью I_0 в плоскополяризованный, интенсивность которого при прохождении через поляризатор уменьшается в два раза, то есть,

 $I_p = \frac{1}{2} I_o$, а затем этот свет проходит через анализатор A, который, в свою очередь ослабляет свет ещё в $\cos^2 \varphi$,

где φ - это угол между главными плоскостями поляризатора p-p и анализатора a-a.

Интенсивность света, прошедшего через анализатор I_a , можно определить по закону Малюса:

Интенсивность света, прошедшего через анализатор I_a , равна интенсивности линейно поляризованного света, падающего на анализатор I_p , умноженной на квадрат косинуса угла $\cos^2 \phi$ между плоскостью поляризации падающего на анализатор света и плоскостью пропускания анализатора:

$$I_a = I_p \cos^2 \varphi .$$